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The time-optimal control problem for a predator-prey system with intraspecies competition among the 

preys is considered. The controls are pesticides or insecticides that act on the preys or the predators. The 

optimal control is synthesized and the dependence of the response time on the parameters of the problem is 

analysed. The time-optimal control problem for a predator-prey system without intraspecies competition 

has been previously studied for the Lotka-Volterra model [lI and for the Mono model [2]. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a controlled system modelling the interaction of two populations with intraspecies 
competition [3] 

x; (4 == (a, -azY1 (x) - a,X, (z) - a& (T)) x, (z) 

Y,’ W = (a& (4 - a4 - a,Y, (x) - asul (t)> Y, (4 
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Here Xi (7) and Yi (T) are the size of the prey population and the size of the predator population at a 
time 7, u1 (T) is the control and ai> are some constants characterizing the variation of the 
population size where a2 and a3 characterize the interspecies interaction, a5 and u7 characterize the 
intraSpeCk!S COIIIpetitiOn and c(6 and as allOW for the effect Of the Control on population Size. 

We introduce dimensionless variables X(t), Y(t), u(t) and t defined by the formulas 

X1 (4 = a4a3 -1x (t), Y, (T) = a,a~-lY (t), 241 (T) = u1u6-l u (t), -L = q-9 

b = u4u1-l, a = (~~a,,)-~ u4u3, c = (Q.u~)-~ u7u1, d = (u4aJ1 usal 

In dimensionless variables, assuming that the predator population is without intraspecies 
competition (c = 0), the equations of the controlled system take the form 

X’ (t) = (1 - Y (t) - ax(t) - u (t)) x (t) 

Y’ (t) = b (X (t) - 1 - du (t)) Y (t) 

The initial conditions at time to = 0 are given by 

X (0) = X,, Y (0) = Y,, X, > 0, Y, > 0 

The controls u(t) are constrained by 

0 < u (i) < Y 

where y is a given constant. 

(1.1) 

(1.2) 

(1.3) 

The control problem is to take system (1.1) from state (X0, Yo) to a nonzero equilibrium with 
u = 0 in a minimum time T(Xo , Y. , uo), where u. is the optimal control. 

2. TIME-OPTIMAL CONTROL WITH CONTROL AFFECTING THE PREYS 

Consider system (1.1) assuming that the control acts only on the preys, i.e. d = 0. Then (1.1) 
takes the form 

X=(1-Y-_-X--)X, Y=b(X-i)Y (2.1) 

with initial conditions (1.2) and control constraints (1.3). 
If we make the natural assumption that the prey population is greater in the absence of predators 

than in their presence, we obtain 0 s (Y c 1. 
Note that for any measurable control u(t) satisfying (1.3), the solution of problem (2.1), (1.2) is 

positive for any finite t. For u = 0, system (2.1) has at least one equilibrium inside the first 
quadrant-the point R = (1, 1 - a). 

The time-optimal control problem involves taking the system (2.1) from state (X0, Yo) to state R 
in the shortest possible time. We denote by T(Xo, Yo, u) the first arrival of system (2.1), (1.2) and 
(1.3) at the point R under the control u. We thus conclude that the optimal control u. is determined 
by the relationship 

inf, T (X0, Y,, u) = T (X,, Y,, uo) (2.2) 

The rest of the analysis depends on the parameters of the problem. 

The equilibrium is a stable focus. The existence of a stable focus corresponds to parameters 
satisfying the inequality 
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FIG. 1. 

c2 < 4b (1 - a) (2.3) 

Note that for u = 0 the stable focus R is unreachable in any finite time. 
We will show that when inequality (2.3) is satisfied, an optimal control exists. Change to reverse 

time t-+ --t. In reverse time, Eqs (2.1) take the form 

x’===(Y+aX-t_u-1)X, Y.=b(1-X)Y (2.4) 

Denote by APR the part of the trajectory X(t), Y(t), t~=0 of system (2.4) with control u = y and 
initial conditions X(0) = 1, Y(0) = 1 -(Y such that X(t) 3 I, tafl (Fig. 1). 

Take the control u = y on APZ? and u = 0 everywhere outside APR. Since R is a stable focus, then 
with this control u system (2.1) will reach the point R in a finite time for any initial condition (1.2). 
This and [4] prove the existence of the optimal control ~a. Thus, by the maximum principle, a 
nonzero solution +i, \lr2 of the control system 

~,‘=~i(Y-l+uu2~X)-b~,Y,~,‘=~,Xi-~,(1-X) (2.5) 

exists such that [S] 

Here 

II = $, ([I - Y - u - GIX) X + $$ (X - 1) Y t qO, q0 = const .< 0 

From Eqs (2.5) it follows that the functions Jri(t) do not vanish in entire intervals. Indeed, if for 
instance $i (t) = 0 for tE [tl , t2], tl < t2, then JIi’(t) =O for tE [ti , t2]. Therefore, by the first equation 
in (2.5) tti2(t)=0, t1st5Gf2, i.e. both conjugate variables Jii , J.r, vanish simultaneously, which is 
impossible. A similar argument shows that the functions JI, and & may only have simple zeros. 
Therefore, by (2.6), the optimal control ul) is piecewise-constant, being either zero or y. 

For further analysis of the optimal control, it is helpful to change from the variables Jli to the 
variables Cpi by the formulas 

cpi (0 = x (9 41 (0, 92 (9 = y ON% (t) 
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By the positivity of x(t) and Y(t), the signs of the functions cpl and ‘p2 are equal to the signs of (91 
and (p2, respectively. From (2.1) and (2.5) we obtain the following equations for cpi*: 

‘pi’ 0) = (-b% + W) X, T9: ($1 = VpiY (2.7) 

Partition the optimal trajectory into sections contained entirely either in the region X> 1 or in the 
region X< 1. Any section of the optimal trajectory contained entirely in the region X> 1 may have 
at most one switching point, with the optimal control switching from u = 0 to u = y. 

Indeed, let X(t) > 1 for tl < t< t2 and the control changes at the instant TE [tl ,221. Since T is a switching point 
of the optimal control, then by (2.6) cpl (T) = 0 at this point. Now from (2.6) and (2.1) we obtain 

(p,X’/X + cp,Y’/Y + $0 = 0 

Seeing that by (2.1) Y’(t)>0 for TV [rl, t2], we obtain the relationship 

‘pz (t) = y f---*0 - Cp~X’iXllY’, t, < t < rz 

Now, by (2.7), we have the following equations for cl G t=~ t2 : 

‘pl’ (t) =r ‘pl (ax + bYX*/Y-) + b$,XY/Y’, ‘pl (t) = 0 (2.8) 

If cpo = 0, then by (2.8) cpl (f) = 0, tl G fs f2, which is impossible. But $0~0. Therefore, the constant &<O, 
and so cp,(t)<O for T<fst2 and cpl(t)>O for tl 6 t<~. Therefore, applying the maximum principle, we 
conclude that as long as the optimal trajectory remains inside the region X> 1, the optimal control is UQ = y for 
t>T and u. = 0 for t<r. We similarly show that the section of the optimal trajectory entirely contained in the 
region X< 1 may have at most one switching point, with the optimal control changing from u = y to u = 0. 

The qualitative behaviour of the switching curve depends on the ratio of the numbers a, b, y. 
First let 

y 2 1 - a - d(4b) (2.9) 

If inequalities (2.3) and (2.9) are satisfied, Eqs (2.1) f or u = y either have no points of rest in the 
regions X> 0, Y > 0 or have one point of rest with the coordinates (1, 1 - OL - y), which is a stable 
node. In either case, the section APR of the switching curve is a trajectory of system (2.1) for u = y 
(Fig. 1). 

To obtain the curve APR, we can solve Eq. (2.4) for u = y, t>O with the initial condition 
X(0) = 1, Y(0) = l- (Y. The section RSB of the switching curve can be obtained numerically. 

The numerical algorithm can be described as follows. Rewrite Eqs (2.7) in reverse time t+ -t 

‘PI’ ftf = fbrp, - acp,f X, ‘pz’ (t) = --cpxY, t > 0 (2.10) 

Consider system (2.4) and (2.10) for u = y with the initial conditions 

x(O)=1,Y(O)=1--a,cpl(O)<.O,(pg(O) (2.11) 

where cpl (0), (~~(0) are some given quantities. Solve problem (2.4), (2.10) and (2.11) for u = y in the interval 
[0, ~~1, where 71 is the first zero of the function cpl (t). At time TV, the control switches to zero. Then the solution 
of problem (2.4) and (2.10) is sought for tE:[ Q, qj, u = 0, using the initial conditions at the point ‘t as 
dete~ined in the preceding step of the ~go~thrn. Here 12 is the next zero of the function 91 (t) after ~~~ The 
point with coordinates X(T~) and Y(T~) lies on the switching Curve RSB. To determine other points of the curve 
RSB, we need to run these procedures for other initial values of cpl (0) and (p2 (0). 

Figure 1 shows the switching curve APRSB for parameter values y = 2,01= 0.5 and b = 112, and 
Fig. 2 shows the Bellman function. 

Now consider the case 

0 < y < 1 -’ CI - aV(4b) (2.12) 



592 V. B. KOLMANOVSKII and N. I. KOROLEVA 

FIG. 2. 

When inequalities (2.3) and (2.12) are satisfied, system (1.1) with u = y has two points of rest 
RI = (1, 1 - OL - r) and R2 = (a-’ (1 - y), 0), where RI is a stable focus and Rz is a saddle point. 
Consider the separatrix in the system (2.1) with u = y which originates from the point RZ and enters 
the point RI. This separatrix leaves the saddle point RZ with a slope coefficient 
a-‘(y-l)(b+o)<O. D enote by Yi the maximum ordinate of the separatrix. By (2.1), the point of 
the separatrix where Y, is reached lies on the straight line X = 1. Given conditions (2.3) and (2.12), 
the optimal control switching curve has the following form depending on the value of Yi. If 
Yi < 1 - CY, then the qualitative behaviour of the switching curve is the same as in case (2.3) and (2.9) 
(Fig. 1). If Y, = l- a, the switching curve is as shown in Fig. 3 (for parameter values cx = 0.03, 
y = 0.4884, b = l/16). Here R,APR is the part of the separatrix of system (2.1) with u = y which 
leaves the point R2 and enters the point RI. Finally, for Yi > 1 - (Y, the switching curve is shown in 
Fig. 4 (for parameter values cx = 0.03, y = 0.02 and b = l/16), where PR is the trajectory of system 
(2.4) for u = y and initial conditions X(0) = 1, Y(0) = 1 -CL The section RSB in all cases, and in the 
last case the section AP also, were generated numerically (using the numerical algorithm described 
above). However, unlike the situations described in Figs 1-3, where the number of switching points 
is at most two, the number of switching points in Fig. 4 depends on the initial position of system 
(2.1) and may be greater than two. 

Y 

l-a 

0 I x- 
FIG. 4. FIG. 3. 
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FIG. 5 

The equilibrium is a stable node. Here we consider parameters corresponding to the inequality 

for which R is a stable node. 

a2 > 46 (1 - a) (2.13) 

Note that for u = 0 the stable node R = (1, 1 - IX) is unreachable in any finite time. This point has 
two entry directions for (Y* > 4b (1 -a) and one exist direction for o.* = 4b (1 - CX) (we do not 
distinguish between opposite entry directions having the same slope coefficient). 
Denote by R3 = ((Y-I, 0) the point of rest of system (2.1) for u = 0 and by R3R the separatrix that 

leaves the saddle point R3 with the slope coefficient b (1 - cx-‘) - 1 CO and enters the node R. 
Now let APR be the trajectory of system (2.4) for u = y, t>O with the initial conditions X(0) = 1, 

Y(0) = 1-a. 
Note that system (2.1) for u = y does not have singular points inside the first quadrant if y 3 1 - (Y 

and has one singular point RI (a stable node) if y < 1 - CX. Analysis of the phase portrait of system 
(2.1) for u = 0 and u = y shows that the controllability region D of this system lies between the 
curves R3R and APR (Fig. 5) obtained for the following conditions: (1) (Y = 0.5, b = l/4, y = 0.02 
for curve 1; (2) (Y = 0.5, b = l/4, y = 2 for curve 2. Here R3R is not contained in D, and APR E D. 
The optimal control is zero everywhere in D, except the curve APR, where it equals y. For the 
points (X0, Ya) outside D, R is unreachable with any admissible control. 

3. TIME-OPTIMAL CONTROL WITH CONTROL AFFECTING THE PREDATORS 

Let us consider the time-optimal control problem assuming that the control acts directly only on 
the predators. 

The equations of the system in dimensionless variables take the form 

x’==(1-Y--fXx)X 
Y-=b(X-l)Y- UY, o,<u,<y, O<a<l, y>O (3.1) 

It is required to take the system from position (1.2) to the equilibrium R = (1, 1 - IX) in the least 
possible time. As before, the synthesis of the optimal control depends on the paramters of the 
problem. Assume that inequality (2.3) holds. Then, as in Sec. 2, we establish the existence of an 
optimal control and therefore prove relationships (2.6), where 

H=~,[(l-Y-aX)X+~2(b(X-l)-U)Y+~,,, 

I#” = const ,< 0 

Here +i, +2 is some nonzero solution of the system of equations 

(3.2) 
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41’ = 9, (Y - 1 + 2aX) - b&Y 

92’ = -92 (b (X - 1) - W -t +,X 
(3.3) 

From these relationships and the maximum principle it follows that the functions +r and Qz do not 
have multiple roots. Moreover, the variables cpr = X+, and cpz = Y& satisfy Eqs (2.7) as before. 

We find that any section of the optimal trajectory entirely contained in the region 1 - Y - aX< 0 
may have at most one switching point, with the optimal control switching from U = 0 to U = y. 

Indeed, assume that for t1 % TV t2 the optimal trajectory of system (3.1) is in the region 1 - Y - cxX< 0, where 
X’(t) <O and there is a switching point TE [t, , t2]. By (2.6) and (3.2), we should have a~ (7) = 0 at the instant 7. 
and moreover 

‘PI’ (4 = x (4 f-90 - v2 ft) Y’ WY (4) i X’ (% 4 f t 5 t2 

This and (3.3) give 

0%’ (t) = [-a, (t) x (t) Y’ (1) - $)Y (4 x (41/X (Q, ‘p2 (7) = 0, t, < t G t, 

The last equations show that &<O, while q2(t)<0 for -r<t<t2 and *z(t)>0 for tl<t<7. 
We similarly prove that any section of the optimal trajectory entirely contained in the region 1 - Y - uX> 0 

may have at most one switching point, with the optimal control switching only from II = y to U = 0. 
Let us now investigate the trajectory of system (3.1) with U = y that passes through the point R. 

In reverse time (t -+ -t) this trajectory is described by the relationships 

x’ (t) = (ax + Y - 1) X, y’ (t) = (y + b - bX) Y (3.4) 
X(0) = 1, Y(0) = l-a, t>o 

First let y>b((a-‘-1). 
The solution X(t) and Y(t) of problem (3.4) is monotone increasing in the interval [0, r], where T 

is the first instant when Y l (T) = 0. By (3.4), we have X(T) = yb-’ + 1. This and (3.5) give 

x’ (r) > ayb-l + a - 1 2 0 (3.5) 

Therefore X’(l)>O, ~0 and Y’(s)<O, S>T. Thus, using (3.4) 

X(t)+oo, Y(t)-tm, t-too 

When inequalities (2.3) and (3.5) are satisfied, the optimal control switching curve in problems 
(3.1) and (3.2) is shown in Fig. 6, where APR is the trajectory of system (3.4). The switching curve 
RSB has been obtained numerically using the algorithm of Sec. 2. 

Let us establish the form of the optimal control switching curve, assuming as before that 
inequality (2.3) holds and taking 

y < b (a-’ - 1) = yi (3.6) 

When conditions (2.3) and (3.6) are satisfied, system (3.1) with U = y has a point of rest 
R4 = (1 + yb-', 1 - (Y - atyb-‘) inside the first quadrant. Investigating in the usual way Eqs (3.1) 
linearized in the neighbourhood of R4 for U = y, we conclude that the point R4 is either a stable 
node for y0 G y < y1 or a stable focus for 

y < y0 = --b + b2 (a214 + ba)-l -: yi (3.7) 

If ye*~<yr and inequality (2.3) is satisfied, the quahtative behaviour of the switching curve is 
the same as in Fig. 6 with the parameters 01 = 0.5, y = 0.7, and b = 112. 

Finally, consider the case (2.3) and (3.7). Let R5 = (a--', 0) be a saddle point of system (3.1) for 
U = y, and R5 R4 the separatrix leaving the saddle point R5 with the slope coefficient (-‘I + y - yI ) 
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f-u 

0 1 x 
FIG. 6. 

(1 + yb-‘)-l < 0 and entering R4. Denote by X1 the minimum abscissa of this separatrix. The point 
of the separatrix where Xi is achieved lies on the line Y + ax- 1 = 0. 

When conditions (2.3) and (3.6) are satisfied, the optimal control switching curve can be 
described as follows: 

1. If Xi< 1, then the qualitative behaviour of the switching curve is as shown in Fig. 6 for the 
parameters IY_ = 0.5, y = 0.7, b = l/2. 

2. If Xi = 1, then the switching curve is R5APRSB (Fig. 7, obtained for (Y = 0.03, y = 0.2619 and 
b = l/16), where R5APR is the separatrix of system (3.1) with U = y that leaves the point R5 and 
enters the point Rq; the section RSB is obtained numerically by the algorithm of Sec. 2. 

3. If Xi> 1, then the switching curve APRSB is shown in Fig. 8 for CY = 0.03, y = 0.02 and 
b = l/16, where PR and RSB are generated numerically. 

As in Sec. 2, consider the case when the parameters of system (3.1) satisfy condition (2.13). 
System (3.1) for U = y does not have singular points inside the first quadrants if inequality (3.5) is 

satisfied; it has a stable node if (3.6) holds. From the phase portrait of system (3.1) for U = 0 and 
U = y we see (Fig. 3) that the region of controllability D lies between the separatrix R3 R 4 D of 
system (3.1) for U = 0 and the trajectory APRED of system (3.4), where R3 = (a-l, 0). The 
optimal control is zero inside D and y on APR. 
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